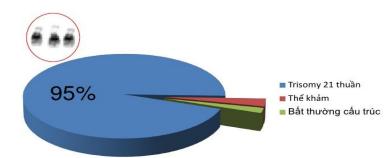
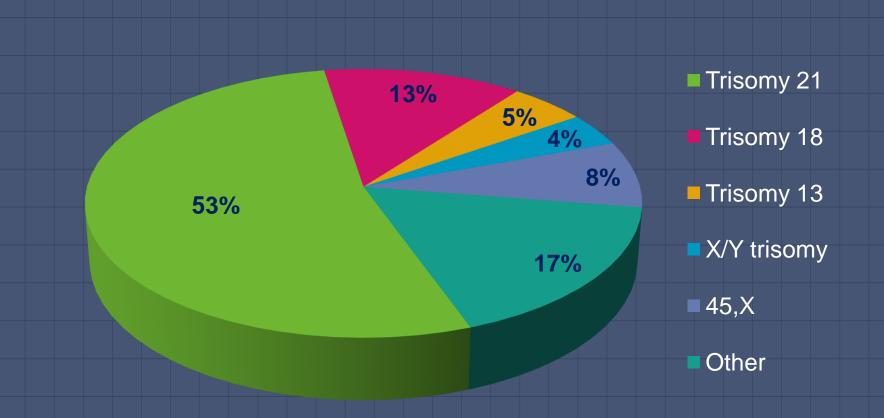
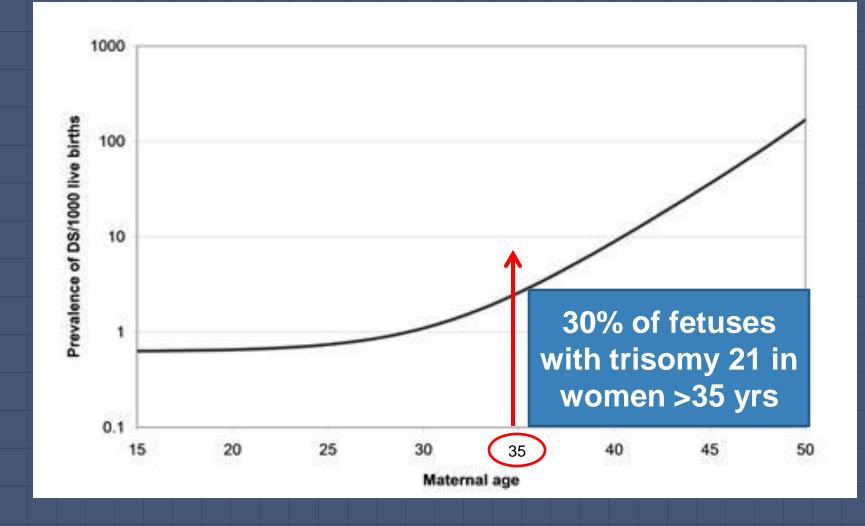

VIETNAMESE - FRENCH CONFERENCE 2018


EVALUATION ON THE PRENATAL SCREENING RESULTS DETECT DOWN SYNDROME FROM CELL FREE FETAL DNA IN THE MATERNAL PLASMA

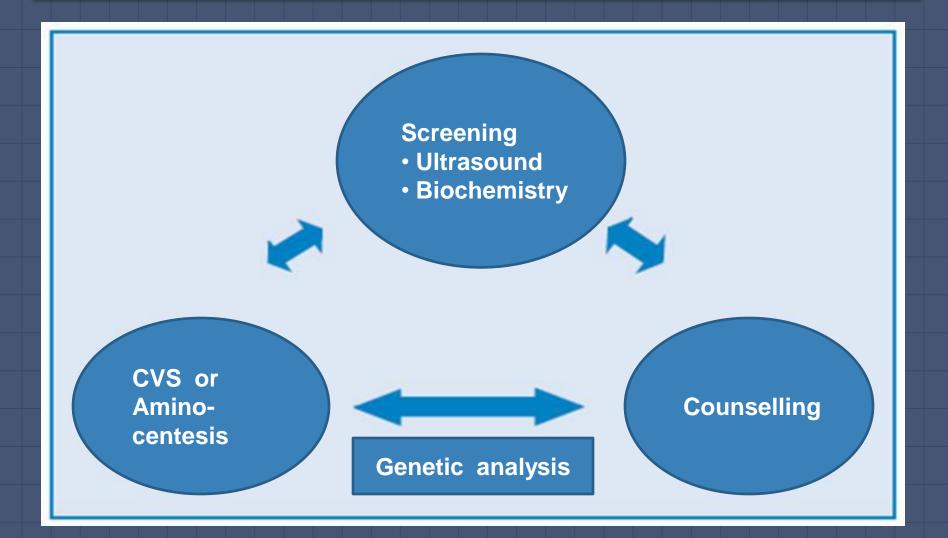
DOWN SYNDROME


DI TRUYÈN TÉ BÀO

- The most common cause of prenatal chromosome abnormalities


- Frequency: 1:700

PRENATAL PREVALENCE OF CHROMOSOMAL ABNORMALITIES



Diana Wellesley et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from populationbased congenital anomaly registers in Europe. European Journal of Human Genetics (2012) **20,** 521–526

RELATIONSHIP BETWEEN MATERNAL AGE AND THE PREVALENCE OF DOWN SYNDROME

PRENATAL SCREENING FOR COMMON ANEUPLOIDIES: CURRENT PRACTICE

DETECTION RATE AND FPR BY CURRENT SCREENING PRACTICE FOR TRISOMY 21

THE RISK OF FETAL LOSS ASSOCIATED WITH CVS/AC

Original Paper

The risk of fetal loss associated with invasive testing following combined first trimester risk screening for Down syndrome – a national cohort of 147 987 singleton pregnancies

Camilla Bernt Wulff^{1,2}, Thomas Alexander Gerds³, Line Rode^{1,4}, Charlotte Kvist Ekelund¹, Olav Bjørn Petersen⁵, Ann Tabor^{1,2} and the Danish Fetal Medicine Study Group

DOI: 10.1002/uog.15820

This article is protected by copyright. All rights reserved.

Abstract Objectives

To prospectively assess the risk of fetal loss associated with chorion villus sampling (CVS) and amniocentesis (AC) following combined first trimester screening (cFTS).

Methods

A nationwide population-based study (Danish Fetal Medicine Database, 2008-2010) included 147987 singleton pregnant women who received cFTS. Propensity score stratification was used to assess the risk of fetal loss with and without invasive test.

Analyses were performed from 3 to 21 days after cFTS for CVS and from 28 to 42 days after cFTS for AC. Results were reported as average risk differences with 95% confidence limits.

Results

The risk of miscarriage and stillbirth was not higher in women exposed to CVS or AC compared with unexposed women independent of the analysis time point. The average effect of CVS on risk of miscarriage was -0.08% (95% CI; -0.64; 0.47) for 3 days and -0.21% (-0.58; 0.15) for 21 days, while the effect on risk of stillbirth was -0.18% (-0.50; 0.13) for 3 days and -0.27% (-0.58; 0.04) for 21 days after cFTS, respectively.

The analysis 28 days after CFTS showed a non-significant average effect of AC on risk of miscarriage of 0.56 % (-0.21; 1.33), while the effect of AC on risk of stillbirth was 0.09% (-0.39; 0.58) for 42 days after CFTS.

Conclusion

CVS or AC was not associated with increased risks of miscarriage and stillbirth. The findings of this study support that the procedure-related risk of CVS and AC is very low and correlates with the indication for the procedure.

Average rate of miscarriage: 0,86% (0,55% miscarriage & 0,31% stillbirth

Wulff CB et al. Risk of fetal loss associated with invasive testing following combined firsttrimester screening for Down syndrome: a national cohort of 147,987 singleton pregnancies. Ultrasound Obstet Gynecol. 2016 Jan;47(1):38-44. doi: 10.1002/uog.15820

NEXT GENERATION SEQUENCING

Sequencing of 1 – 43 billions short DNA reads (Massive Parallel Sequencing)

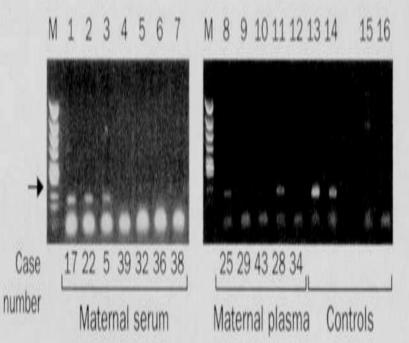
Aneuploidy Detection and Single-gene genetic disorders

2011: Introduction of NIPS

2008 detection of Trisomy 21

- Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 2008;105:20458-20463
- Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 2008;105:16266-16271

NONINVASIVE PRENATAL SCREENIG (NIPS)

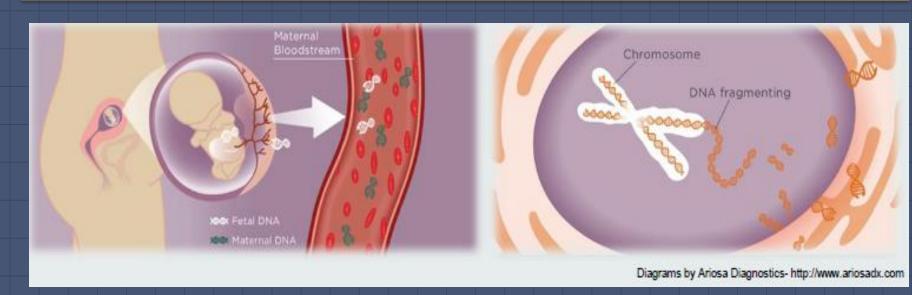

Exposure of fetus to risk

Widely Used Application Goals of NIPS

Reduce false positives

High detection rate

NIPS: FETAL CELL FREE DNA (cffDNA)



 Mandel P, Métais P. Les acides nucleiques du plasma sanguin chez l'homme. C R Seances Soc Biol Fil. 1948;143:241-3.

Lo et al. Lancet 1997; 350:485

FETAL CELL FREE DNA

Originates from cells of the

trophoblast (placenta)

Released into bloodstream as small DNA fragments (150-200 bp)

3-13% of total cell free DNA in maternal plasma

Reliably detected >9-10 weeks

gestation

Short half life (16.3 min),

undetectable by 2 hrs postpartum

(Ehrich et al, AJOG 2011)

NIPS METHODS

MPS following targeted enrichment of DNA

Chromosome specific (target) sequences, CSS Single nucleotide polymorphismbased analysis, SNP

Thomas Harasim et al. Current status of non-invasive prenatal testing (NIPT): genetic counseling, dominant methods and overall performance. J Lab Med 2016; 40(5): 299–306

DNA SEQUENCING USING CELL FREE DNA

MATERNAL BLOOD SAMPLE

MATERNAL AND FETAL CELL-FREE DNA

CELL-FREE DNA SEQUENCED VIA MASSIVELY PARALLEL SEQUENCING (MPS)

ALIGNMENT AND

COUNTING

CCCTTAGCGCTTTAACGTACGTAAAAACCCTT AACGTACGTAAAAACGGGGGTCAAAGGTTCCC GACTTAAAATCGGAATCGATGCCCAAACTT GAATCGATGCCCAAACGGGGTCAAAGTTCCC

Chromosome 21 No Aneuploidy

Aneuploidy

(A. Swanson, 2013)

IMPORTANCE OF cffDNA

Trisomy detection via cfDNAdepends on fraction of DNA that is fetal

The higher the fetal fraction, the easier it is to detect trisomy

10% fetal DNA in circulation		20% fetal DNA	in circulation
Disomic Chr	Trisomy 21	Disomic Chr	Trisomy 21
0 0			
Total: 100	Total: 105	Total: 100	Total: 110
(Maternal: 90) (Fetal: 10)	(Maternal: 90) (Fetal: 15)	(Maternal: 80) (Fetal: 20)	(Maternal: 8 (Fetal: 3

EVALUATION OF NIPS (37 studies, n=21.608)

Aneuploidy	n	DR (%)	FPR (%)		
Trisomy 21	1.051	99,2	0,09	Reduced ris	
Trisomy 18	389	96,3	0,13		
Trisomy 13	139	91	0,13		
Monosomy X	177	90,3	0,23		
Other	56	93	0,14		
Trisomy 21 (twin pregnancies)		93,7	0,23		
Cil M M Illtracound Obstat Company 2015					

Gil M.M. Ultrasound Obstet Gynecol 2015

ACOG Committee Opinion on NIPT

The American College of Obstetricians and Gynecologists WOMEN'S HEALTH CARE PHYSICIANS

COMMITTEE OPINION

Number 545 • December 2012

- "Cell free fetal DNA appears to be the most effective screening test for an euploidy in high risk women... is one option that can be used as a primary screening test in women at increased risk of an euploidy"
- "[NIPT] should be an informed patient choice after pretest counseling"
- "[NIPT] should not be offered to low-risk women or women with multiple gestations"
- "A patient with a positive test result should be referred for genetic counseling and should be offered invasive prenatal diagnosis for confirmation of test results."

Also supporting NIPT for high risk pregnancies:

OBJECTIVES

Evalutation of NIPS: Down Syndrome Detection using NGS and cfDNA in maternal plasma

SUBJECTS

Sample collection and recruitment criteria

- Singleton \geq 10 weeks with at least one criteria:
- ♦ Maternal age \geq 35.
- ✤ High risk biochemical screening >1/250.
- Abnormal ultrasound.
- Previous affected pregnancies: Aneuploidy, miscarriages, still births,...
- Pregnant women agreeing to participate

Not included:

- ✤ < 10 weeks pregnancies, multiple pregnancy</p>
- Pregnant women gone through transplant or stem cell treatment
- Pregnant women gone through blood transfusion less then 30 days
- Pregnancy from egg donor, cancer
- Pregnant women with chromosomal abnormality

METHODS

Study design: Prospective Study

Patients and samples: 463 samples

Facilities:

- Department of Biochemistry, Hanoi Medical University
- Center of Prenatal Diagnosis, Hanoi Hospital O & G

Timeline : 5/2016 – 3/2017

Data analysis: SPSS 16.0, statistical analysis,...

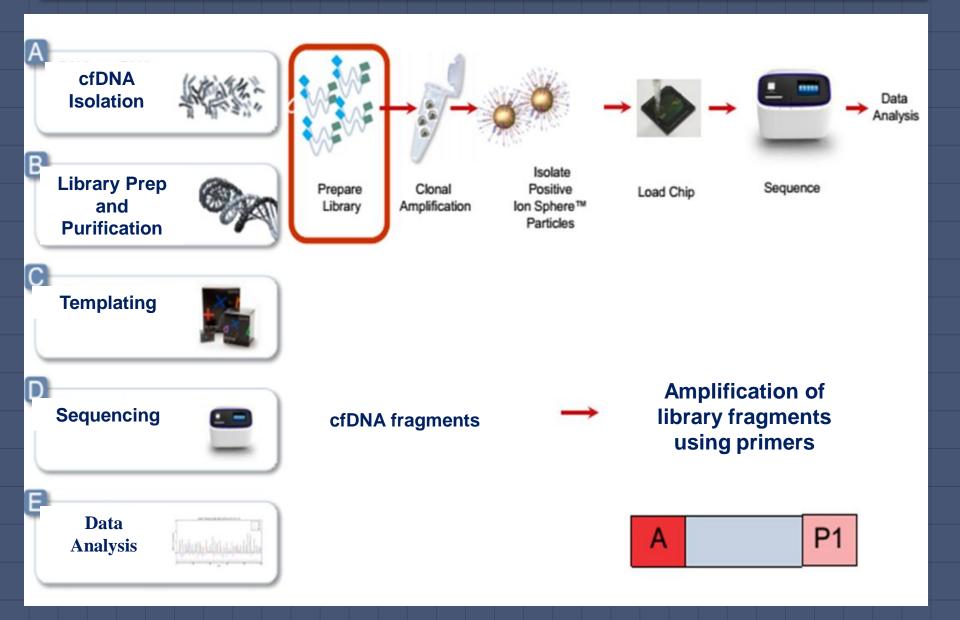
MATERIALS

Sample:

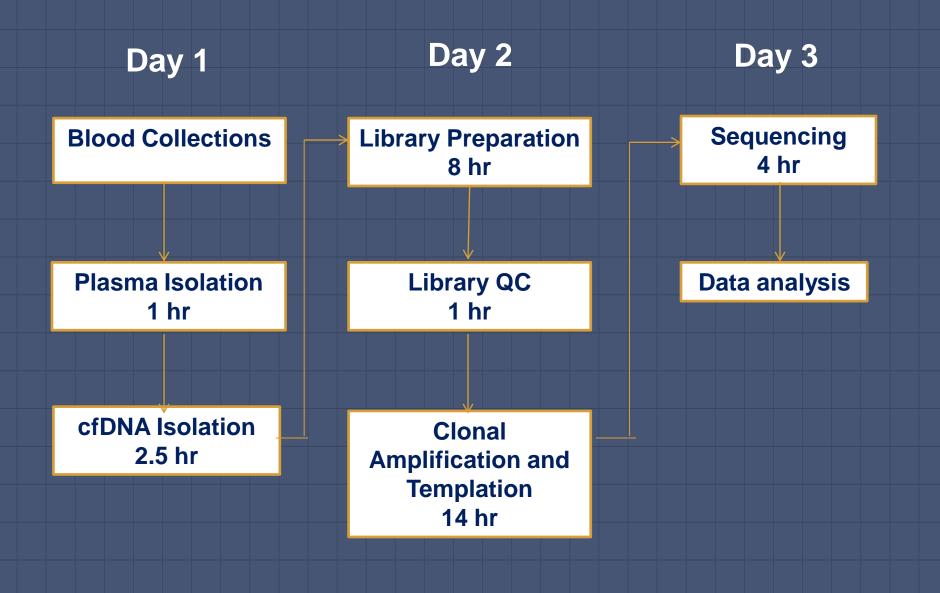
10ml whole blood collected in Streck tube

Equipments :

Reagent and instrucments provided at center screening, prenatal diagnosis and newborn, HN O&G hospital


Chemicals:

cfDNA Extraction: PerkinElmer


Library Preparations and Templation: ThermoFisher

Sequencing: PI chip on Ion Proton - ThermoFisher

METHODS

NGS METHOD - TIMELINE

RESULTS AND DISCUSSION

1. SUBJECTS

	Quantity			
Maternal Age	n	%		
18-24	20	4.32		
25-29	102	22.03		
30-34	113	24.41		
35-39	165	35.64		
≥ 40	63	13.6		
Total	463	100		
X ±SD	33.6 ± 5.4			
Range	19 - 46			

Shan Dan, Wei Wang, et al (2012). Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11105 pregnancies with mixed risk factors. Prenatal Diagnosis,

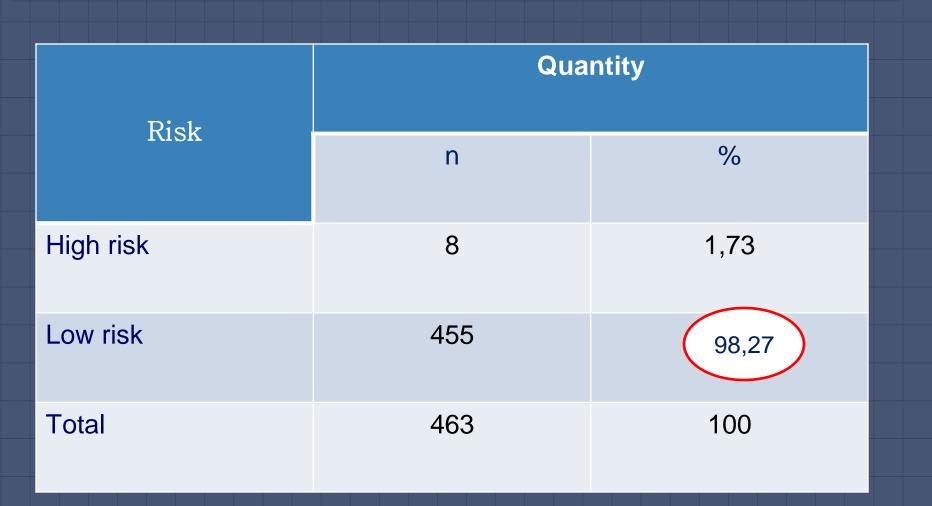
1. SUBJECTS

Gestation	Quantity		%cffDNA	
	n	%	±SD	
10 – 13 weeks 6 days	142	30.7	7.04±0.02	
14 – 20 weeks 6 days	295	63.7	7.13±0.03	Tăng dần
≥ 21 weeks	26	5.6	9.53±0.03	
Total	463	100		
X ±SD		16±3.6		

Yi Zhou, MD, Zhongyi Zhu, et al. (2015).

2. cffDNA

cffDNA	Quantity				
	n	%			
< 3.5%	19	4.1			
> 3.5%	444	95.9			
Total	463	100.0			


Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH (2015). Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol
Saskia Tamminga, Merel van Maarle, et al (2016). Maternal Plasma DNA and RNA Sequencing for PrenatalTesting. Advances in Clinical Chemistry

3. DOWN SYNDROME DETECTION

No	Maternal Age	Gestational Age	T21 Assessment	z- score	Sex	NIPS	Karyotype
1	27	17w	TT: 1/38	6.18	Male	T21	47,XY,+21
2	43	20w	TM	9.16	Male	T21	47,XY,+21
3	25	13w3d	CB: 1/13	4.87	Female	T21	47,XX,+21
4	40	16w4d	TT: 1/50	6.8	Female	T21	47,XX,+21
5	41	18w5d	CB: 1/151	10.02	Female	T21	47,XX,+21
6	34	16w	CB: 1/9; NT:3.2	16.06	Male	T21	47,XY,+21
7	36	17w3d	TM	8.97	Male	T21	47,XY,+21
8	41	10w6d	ТМ	4.61	Female	T21	Abortion

TM: Maternal age; TT: triple test; CB: Combined test; NT: Nuchal translucency; T21: Trisomy 21 high risk

3. DOWN SYNDROME DETECTION

- Shan Dan, Wei Wang, et al (2012). Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11105 pregnancies with mixed risk factors. Prenatal Diagnosis,

- Akolekar R, Beta J, Picciarelli G, Ogilvie C, D'Antonio F (2015). Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol

SUMMARY

Down Syndrome Detection using NGS and cfDNA in maternal plasma **Increased Detection Rate**

Decreased FPR

Decreased miscarriages

98.27% reduction of invasive procedures (CVS or amniocentesis)

Invasive testing to confirm high-risk NIPS results

THANK YOU